A Study of the Electrochemical Synthesis of Tri-n-butylstannyldiphenylphosphine and of the Reaction between Chlorodiphenylphosphine and Alkyl Halides

J. Chem. Research (S), 1997, 156–157 J. Chem. Research (M), 1997, 1064–1074

Hugh C. Brookes, Elena I. Lakoba and Michael H. Sosabowski*b

^eDepartment of Chemistry, University of Natal, Durban, 4014, Dalbridge, South Africa ^bDepartment of Pharmacy, University of Brighton, Cockcroft Building, Moulsecoomb, Brighton BN2 4GJ, UK

The electrochemical synthesis of tri-n-butylstannyldiphenylphosphine is described, and a new mechanism for the electrochemical coupling between Ph₂PCI and Bu₃SnCI and between PH₂PCI and alkyl halides is proposed.

Trialkylstannylphosphines, R₃SnPR₂, have attracted considerable attention in the last decade owing to their usefulness in organometallic synthesis, ¹⁻⁴ affording compounds which would otherwise prove inaccessible. However, they are of limited use because of inherent difficulties in their preparation. This work focuses on the development of an electrochemical synthetic route using chlorodiphenylphosphine as starting material.

Perichon *et al.*^{7,8} have used a mixture of Ph_2PCl and an alkyl chloride or bromide in DMF (N,N-dimethylformamide) with Mg as a sacrificial anode under controlled-current conditions to prepare alkyldiphenylphosphines. The following mechanism was proposed:

cathode:
$$Ph_2PCl + 2e^- \rightarrow Ph_2P^- + Cl^-$$
 (3)

anode:
$$Mg \rightarrow Mg^{2+} + 2e^-$$
 (4)

solution:
$$Ph_2P^- + RX \rightarrow Ph_2PR + X^-$$
 (5)

Here we report on our attempts to repeat these findings using Bu₃SnCl instead of an ordinary alkyl halide.

Initially, possible interactions between the components of our system were investigated, and the formation of tetraphenyldiphosphine was detected. In the presence of an electric current, only Ph₂PPPh₂ was formed when Ph₂PCl reacted with BuⁿBr, Br[CH₂]₄Br or Bu₃SnCl in an undivided electrochemical cell with Mg as a sacrificial anode under controlled potential conditions (-1.6 *vs.* SCE). Other workers¹¹ have reported that electrolysis of Ph₂PCl solution in acetonitrile in the presence of an excess of PhCH₂Br in a conventional two-compartment cell with Pt electrodes does not yield the expected benzyldiphenylphosphine. The following mechanism was proposed to account for the formation of the reaction products:

$$Ph_2P - PPh_2 + PhCH_2Br \rightarrow Ph_2P - P^+Ph_2(CH_2Ph)Br^-$$
 (7)

$$Br^-Ph_2P-P^+Ph_2(CH_2Ph) \rightarrow Ph_2PBr + Ph_2PCH_2Ph$$
 (8)

$$Ph_2PCH_2Ph + PhCH_2Br \rightarrow Ph_2P^+(CH_2Ph)_2Br^-$$
 (9)

We propose the following interpretation of the results as an alternative to that suggested by Perichon *et al.*^{7,8} It is known that under controlled-current conditions the potential of an electrochemical system is not always constant but can shift gradually to progressively more negative potentials. If the solution contains more than one electroactive species, eventually a new electrode reaction occurs.¹² In such a system the sequence of electrochemical reactions is determined by the relative values of the reduction potentials for each compound. A sequence leading to the tertiary phosphines is proposed as follows:

$$Ph_2PCl + 2e^- \rightarrow Ph_2P^- + Cl^- \qquad E^1_{1/2}$$
 (10)

$$Ph_{2}P^{-} + Ph_{2}PCl \rightarrow Ph_{2}P - PPh_{2} + Cl$$

$$Ph_{2}P - PPh_{2} + 2e^{-} \stackrel{\longleftarrow}{\hookrightarrow} 2Ph_{2}P^{-} \qquad E_{1/2}^{2} \qquad (11)$$

$$Ph_{2}P^{+}RX \rightarrow Ph_{2}PR + X^{-}$$

or

$$Ph_2P' + RX \rightarrow Ph_2PR + X'$$

However, if alkyl halide reduction occurs before the Ph₂P—PPh₂ reduction, the formation of the tetraphenyldiphosphine is primarily observed.

$$R^{\bullet}$$
 or $R^{-} + Ph_{2}P - PPh_{2} \rightarrow no$ reaction (12)

Consequently, an alkyl halide with a reduction potential more negative than that of tetraphenyldiphosphine should give the alkyldiphenylphosphine as the major product under constant-current conditions.

Comparison of the reduction potentials ($E_{1/2}$) for Ph₂PCl and Bu₃SnCl in DMF at the Pt electrode showed that the first reduction wave of Bu₃SnCl had a slightly less negative value than that of Ph₂P—PPh₂, while the second wave had approximately the same value. From these data it might be expected that the reduction of Bu₃SnCl would be slightly more favourable in comparison with Ph₂P—PPh₂. However, the similarity of the $E_{1/2}$ values suggests that at some potential both reactions occur simultaneously. This is possible because the reduction waves overlap to some extent. Both electrogenerated species will react with the constituents of the solution:

$$Bu_{3}SnCl + e^{-} \rightarrow [Bu_{3}Sn^{\bullet}] + Cl^{-}$$

$$[Bu_{3}Sn^{\bullet}] + Bu_{3}SnCl \rightarrow Bu_{3}SnSnBu_{3} + Cl^{\bullet 17}$$

$$[Bu_{3}Sn^{\bullet}] + Ph_{2}P \rightarrow PPh_{2} \rightarrow \text{no reaction} \qquad (13)$$

$$Ph_{2}P \rightarrow PPh_{2} + 2e^{-} \rightarrow 2[Ph_{2}P^{-}]$$

$$[Ph_{2}P^{-}] + Bu_{3}SnCl \rightarrow Bu_{3}SnPPh_{2} + Cl^{-} \qquad (14)$$

It is clear that the first reaction depletes the supply of Bu₃SnCl necessary to provide for the second reaction. The second reaction gives tributylstannyldiphenylphosphine, the required product.

This work clearly shows that: (1) Bu₃SnPPh₂ is synthesised in the course of the electrolysis as a result of cleavage of the P—P bond in Ph₂PPPh₂; (2) reduction of Bu₃SnCl occurs more easily than that of Ph₂PPPh₂; and (3) the yield of Bu₃SnPPh₂ can be increased by increasing the concentration of Bu₃SnCl in the mixture.

Techniques used: CV, 31P NMR, MS

References: 20

Table 1: Half-wave potentials for the electrochemical reduction of Ph_2PCl

^{*}To receive any correspondence.

- Fig. 1(a): Cathodic reduction of Ph₂PCl in DMF at Pt working electrode
- Fig. 1(b): CV of Ph₂PCl in DMF at Pt working electrode
- Fig. 2: Cathodic reduction of Bu₃SnCl in DMF at Pt wire electrode
- Fig. 3: CV of Bu₃SnCl in DMF at glassy carbon rotating disc electrode

Received, 26th November 1996; Accepted, 29th January 1997 Paper E/6/08005G

References cited in this synopsis

- S. E. Tunney and J. K. Stille, *J. Org. Chem.*, 1987, **52**, 748.
 T. N. Mitchell and H.-J. Belt, *J. Organomet. Chem.*, 1990, **386**, 167.
- 3 D. Dakternieks and C. L. Rolls, Inorg. Chim. Acta, 1989, 161, 105.
- 4 H. Schumann, *Angew. Chem.*, 1968, **81**, 970.
 7 J. C. Folest, J.-Y. Nedelec and J. Perichon, *Tetrahedron Lett.*, 1987, **28**, 1885.
- 8 J. Chaussard, J. C. Folest, J. Y. Nedelec, J. Perichon, S. Sibille and M. Troupel, *Synthesis*, 1990, **5**, 369. 11 T. J. Hall and J. H. Hargis, *J. Org. Chem.*, 1986, **51**, 4185.
- 17 R. E. Dessy, T. Chivers and W. Kitching, *J. Am. Chem. Soc.*, 1966, 88, 4543.